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Remarks on BIB Designs with Repeated Blocks

by L. Pesotchinsky

1. Introduction and Summary.

Let V denote the set of v elements 1,2,...,v. A balanced incomplete

block design with parameters v, b, r, k, A, b* denoted further as

BIBD(v,b,r,k,xlb*), is such a set of b elements, referred to as blocks, thakb:
1) each block contains exactly k elements of V,
2) each element of V occurs in exactly r blocks and each pair

of distinet elements of V agppears together in exactly A\ blocks,

3) there are exactly b* distinet blocks among all b blocks of BIED.

If b*¥ <b then such design is called BIBD with repeated blocks.
The construction of designs with repeated blocks has interesting applications
in experimental designing, controlled sampling and some other fields. As
the examples we can consider two sebttings. At first, suppose that an industrial
process depends on v controlled factors xl,xe,,..,xv and also on some
number of unknown and uncontrolled parameters, the situation common in
industrial conditions when XysXpseee X are technological parameters and
the others are conditioned by variation in raw materials and so on. Then
we can "tune-up" the process by changing levels of controlled parameters
with accordance to some experimental design and after the data analysis
find the optimal levels of xi'S, 1 <i< v, corresponding to the set
of unknown uncontrolled variables. If the experimental scheme is once
established, then we can manage to perform an "up to the moment tune-up"
under the condition that the variation of unknown variables does not occur

in relatively small intervals.



From a practical point of view it is too risky to variate all v
technological parameters simultaneously because we can reduce the effec-
tiveness of the process by the choice of points too remote from the optimal
one established on the previous step. As usual it is sometimes impossible
to try certain combinations of xi's for the technological reasons. The
solution for such a setting could be in choosing "experimental units" of k
factors from v and including in a set of such units only those which can
be realized practically. The structure of the design inside the units can
be arbitrary, depending on our knowledge of the process, consideration of
the time and cost conditions, etc.

It is easy to notice that the choice of a BIBD for the set of experi~
mental units would provide the simplicity of the scheme and equal conditions
for all xi's, as well as meet all the demands above, provided we could
construct such BIBD's including "favorable" (or the most informative) blocks
and excluding "unfavorable"” ones.

The same reasoning can be implemented in a problem of controlled sampling,
when the goal is to obtain an unbiased estimator of the population mean.
Without going into details, we can mention that if the population size is
v and sample size is k, then the sampling design based on BIBD with the
block size k can be used. And like above it is desirable to include in
the support of the sampling design favorable combinations of elements and
exclude unfavorable, the latter is especially important if we have to exclude
the combinations of elements with the same, say, geographical or economical
conditions. It is also interesting to increase the measure of favorable
combinations, that is, to copy the corresponding blocks maximal possible

number of times.



In the last years the papers of Foody and Hedayat (1976), Wynn (1975),
ven Lint (1971), van ILint and Ryser (1972), Chakrabarti (1963 ) and many
others were devoted to this class of problems. The properties and algorithms
of construction of BIBD's with repeated blocks were studied and some
bounds on b* were obtained in the above mentioned works.
In this paper the structure of some subsets of supports. that is
specified in some way sets of distinct blocks, is studied and a "conditional"
inequality for obtaining lower (including sharp) bounds on b* is considered.
Let E denote the set of distinct blocks (support) of a BIBD and EJ. — the
A

set of distinct blocks repeated Jj times, j <A, E = le—l Ej’ Thus, if

nj is the cardinality of Ej’ nj = IEJI, then

A

b* = 2 n. and
. J
J=1

(1.1)

A

b = i: Jjn
j=1 ¢

Among all BIBD's with the fixed values v and k we can specify
those with the least possible value ko of A, denoting them as
jo = BIBD(v,bO,rO,k,XOIbS), where b is the minimal value of b¥
corresponding to bo.

Now it is interesting to find out what could be the values of b¥*'s
for BIBD's with A\ = tko and how the sharp bounds on bg could be
obtained. Also from the point of view of applications the structure of

Ej‘s and especially of Ek’ that is of the set with the blocks copied

maximal number of times, is of some interest.
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In section 2 we consider the case of }\'O = 1. The structure of E%.
and lower bound on b* (if b*-b¥ > 0) are found. The bound obtained
is sharp either for any fixed %k, or if k =3 for arbitrary v not
equal to 9.

In section 3 an inequality for lower bound of b¥* depending on
cardinality of E}\ is obtained and some examples are given, including

the sharp bound bX > 22 in case of v = 8, k = 3, the corresponding

design was constructed by Foody and Hedayat (1976).

2 Designs with Repeated Blocks and %'O = 1.

Suppose that a BIBD(v,b,r,k,}\.lb*) =3 is not merely a A-repetition of

a BIBD J, with Ay =1, thatis b* >by =b S X=1) e can find

* —J »

0 0 0 k(k-1
now the lower bound for b*-bo.
Theorem 2.1. Under the above condition b¥*-b, > 2(k~1). TFor the proof
assume that there exist two elements O and # such that their pair
inclusion occurs in some block of E)\, and in E' = El U E2U oooll) E%.-l
exist blocks with O and B. Then assume that their exists such element
i +that pair inclusions @i and Bi belong to E'. Then the minimal

number of distinct blocks in E' with these inclusions is equal to 4 iff

al 1 eeoe 1 al “5 LI !.]

Bi i s s s i Bi j5 OO jk



In the same way, considering inclusions i, and Bi5 we come bo the

3

-

conclusion that the minimal number of distinct blocks in E' containing
& and P is equal to 4 (k-1). This number corresponds to the situation
with even A\, iff E' = E}\/g and the structure of EK/Z is represented

by four mgtrices [k-1 x k]:

@M) , @v*), @®

M),  (B|M¥)

where M, M* are mabtrices [k-l x k-1] with the same distinct (k-l)2
elements, any any two rows of M and M¥ have exactly one common element
(e.g. M* can be the transpose of M).

Now, if we can not find such @ and P as assumed above, then either
EK = ¢4 and it means that any pair inclusion belongs to at least two blocks,
thus b* > 2b,, or E' is itselfa BIBD J' with v=+v', r=1r"b =D’

and k, A as in 3 . For the nurber of blocks n, in Ex we have

_ y(v=1)=v! (v'-1)
k(k-1)

and it implies that for J! Ay = 1. Then

thus
vt-1 > k(k-1)
and.

b ¥ > 2by > 2k (k=1)+2 > 4 (k-1)



(br* > b because any pair of E' belongs to at least two blocks,
otherwise there is a block repeated A times, contradicting the fact
E'HEX = ¢4). Also if such O and B exist but we can not find i

that Gi and Pi both belong to E', then we can consider separately
sets of blocks with & and B8, say E& and Eé, E&, Eé < E', E& n Eé =
and so on.

To complete the proof we can write

A=l
b* =, + 'Z& ny>m * 4 (k-1)

(once again, the latter because any pair of elements which occur in E!

appears at least in two distinct blocks). Both these inequalities imply
b*AbO > 2(k-1) .

Note: In the same manner as above we can show the potential existence of

the designs with

b* = b, + 2(k=1) + 2p ,

0
vwhere
v=1
OSp_<_r-k+l=m-(k—l).

The existence of such designs is proved below.

Examples.

2.1. Let us consider a permutation of two elements @, and &, in a

1 2

BIBD (v, b, T, K, 1[b0) = X4 . By this method we obtain BIED d('),

0
j}o and ', have exactly b, - 2(ro-l) common blocks, and thus a
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BIBD M = Jo U :}6 has b¥* = Dby + 2(1'0-1) distinct blocks. Now, if

Ty = k+p, we have the design as in theorem 2.1 above. The lower bound
is reached for r, =k, that is for symmetric BIBD with v = k (k~1)+1.
2.2. For k=5 the symmetric BIBD corresponds to v =7, and since

sny BIBD with k=5 and v > 15 contains at least one subsystem of
blocks isomorphic to J, = BIBD (7,7,5,3,1/7) the bound can be reached
also for any v >15. If v =13 and k =3, we can use nonisomorphic
designs jO and :Ié as presented by Hall (1967, p. 237) %o obtain the
same result, and for the exclusive case of v = 9 we can prove that

b*-by > 6. Really, if b¥*-b, = 4 4in this case, then the structure of

E' is ag in theorem 2.1 and only 6 elements are engaged in E'. But then
in 8 blocks of E, we should have occurrence of each of the rest 3
elements four times, which can be done only in 10 blocks. Thus the

construction of a BIBD with b¥* = bo+h is impossible in this case. On

the other hand b* = bo+6 can be reached as in example 2.1) above.

In the next part of the section we will find the conditions under
vhich a set Ek of blocks is a part of support of a BIED.

Lemma 2.1. Let ' be a BIBD with A > 1 and the support of J .consists

of E and EB' = UE;i Ej' Suppose there exists a BIBD .do with Ao =1

which support contains E,. Then exists a BIBD J op With AL =1 with
the support containing EK U as s where a, is an arbitrary block of E'.

For the proof let us denote the incidence submatrix corresponding to

E' as A = (n' x v], An, +n' = b



Due to the condition of the lemma there exists such a set of blocks

E¥ +that the matrix A¥ corresponding to it satisfies the equation
T T
= = ¥ ¥ = X
Bl AlA1 ANA¥T A AB¥ ,

Suppose, that we can not construct E¥ with A¥ having al as its

first row. Then for any set of blocks b2’b5""’bn'/h

T -n%{x
- - = ¥
Bj-aya, - bj £ (n-1)B* ,
J=2
it means that we can not construect E¥ without a) contradicting the
assumption.

The lemma enables us to prove the main result of the section:

Theorem 2.2. A set Eh of blocks copied X times is a part of support
of a BIBD(v,b,r,k,\|b¥*) iff it is a part of support of a

BIBD(V,bO,rO,k,l|bO).

Proof. We can use the induction with respect to the parameter n = IEKI.
The basic statement for n, = 1l or 2 is evident, and suppose the statement
of the theorem is valid for n, = n. Then, if n, = n+l, we can construct
using the assumption for the set of blocks Eh\\al (al € Eh) such set

of blocks E¥* that {Ek\\al} U E¥ is the support of a BIBD with A = 1.
Then we can use lemma 2.1 with block a. added to E' A times to prove,

1
that there exists a set of blocks E* containing a - Thus the proof is

accomplished.

Examples.

2.3. Let us consider a BIBD with v =7, k = 3. Since any two blocks
of such design with Ay =1 (bo=7) have one common element, it follows

8



from theorem 2.1 that E, can consist of 1 or 3 ©blocks,; because any
two blocks determine the third with the common element and four blocks
determine the other three. On the other hand it means that b* > 11 if

n, < 7, because then n, < 3.

2.4. TFor the same situation the fact o, = 1l or 3 dimplies that if

b¥* = 12, then nx = 3% (else Db* > 13), and it means that all 7 elements
belong to Ex. The number of blocks 9 in E' multiplied by 3 (the
number of pairs in each block) is the total number of pairs in E', and

since we must have 12 distinct pairs in E' we can write
A
(2.1) Y x. =12, 2 ix, =93,

where xj is the number of pairs which belong to j distinct blocks.
(2.1) implies
A
(2.2) ¥ o(3-e)x. =3,
3= ’
.but with any pair of elements we can have at most 2 blocks, because the
elements of such pairs already belong to EK with in total 3 other
elements, thus Xs = 0 for j >3 contradicting (2.2). So the
construction of BIBD (7,b,r,k,h|12) is impossible. The reasoning
above can be illustrated by the following construction: without loss
of generality we can have E, = 123, 145, 167; then with any pair, say
24, we can have in E' only 2 blocks (246 and 247), thus %y = 0 for j > 3.
In the same way we can prove that a BIBD with b* = b, + 2 (k-1)+p does

not exist for p < k-1.



For the values of KO > 2 we can not expect meaningful results charac-

terizing the properties of different sets Ej € E with respect to the design

3() with A =X, > 2, because the latter itself can have repeated blocks.

0

The study of supports of such designs, namely with A =\, > 2, could be

0
*
simplified by constructing the "minimal" design Jdo with the least size

of support b This problem is difficult itself and a method for

*
0°
*

0 is considered in the next section.

evaluating b

3. The Conditional Bounds for the Support Size.

We will now use the information about the size of Ek to obtain some
bounds on b*. As our sources of such information we can use either
theorem 2.2 (for the case of Ao = 1), or some auxiliary facts, such as
e.g. theorem 10.2.2 from van Lint (1974, p. 100). The latter states
that if blocks bl and b2 oceur ey and e, times in E and K12

is the number of objects common to both of them, then

v = Ak - rhlg 2
(3.1) (g- - k)(g— -~ k) > (—-;::———-) .
1 2
In particular, if e, =e, = A then A,. =0 or 1 and since r = éiz:il
’ 1 2 ’ 12 k-1

we have from (3.1)

2 2
v-1 2 _k (k-1) . _
(ﬁ - k) > —-—-—-—-(v_k)g (if Mo = 0)
(3.2) or :
2 2
(-K—:%-k)gz_(.wﬂ_)_ (Ef nyn=1) .

(v-k)2 12
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2 .
It follows from the first inequality of (3.2) that v >k » 80 with
v < k2 we can not have disjoint blocks in EK° If v=8 and k=3

we can prove the stronger fact.

Lemma 3.1. For the BIBD (8, 56 %‘-, 21 25“—, 3, A1p*)

n, = [E|<1.

Since here v < k2 we have to prove only that two Jjoint blocks can not

be included in E}\‘ (obviously we can not have in E)\ three of them).
Suppose that two such blocks, say 1235 and 145 are in EX Then

it follows that three blocks with element 1 and other elements must

be included in EK/E:
167, 168, 178 € Ek/g .

Then we can write, denoting the number of coples of block ijk as eijk’

5
N C0p = /2, vhere QB = 67, 68 or 78
i=2
(3:3) and,
8
26 eijOt =\, where ij = 24, 25, 34, or 35 .
a:

For the number of pair occurrences of the elements 2, 3, 4, 5 with the

elements & = 6, 7, 8 we have
(3.%) 2 ) & * & €iap = W, where 6 <P < 8 and ij

as in (3.3). Teking the sum over & =6, 7, 8 we obtain from (3.3)

and (3.4)s
11



2.u>\+2-%7l=12>\.

The contradiction proves that two joint blocks, as well as disjoint ones,
can not be included in E)\
From the equation (1.1) we can find that for even A
A/2-1

(5.52) L (b*n ) = b-An - I o

where Otk = nl teo oot nk-n)\_l —e oo = nh_k and for odd A

A=3

2 Q.
(3.5b) X (o*m)-ban +E(2 ¥ o +A,

k=1

The values Ot,k are non-negative, because any pair which occurs in
E,  must appear at least once (in Ek) or more (in other subsets Ej
with j < k). Moreover, if ¢, =0, then @, =0 for all i<k

Then, if the value n is the maximal one, we must have & >0 for

k
all k, because otherwise the same design could be obtained by coping all
k . . k
the blocks of Ui=l E)\.'-i A times and deleting the blocks of Ui=l Ei’

thus increasing the value of nx

Hence in general case we have from (3.5)

(3.6a) b*>2—v—(—t]-'l -n

=~ k(k-1) A

and if n, is the maximal one,

(3.6b) b* > kz-‘a.gl_’-i‘_lyl - n 4

12



For v=28, k=3 (3.6b) gives us
> 19 ,
and for v=7T, k=3 and b* > 7 we can obtain once again

¥ > 11 (since n, < )

We can also use the fact that

3.7 ,
e j>z>\./2 "=

where [x] is an integer part of x. Thus for v =8, k =3 we have

SN

AN

n.
g >afe 9

((3.7) simply states that any pair, which appears in one of the sets Jj,

[ V"'l

- is the
K=l

3 >M\/2, can not oceur in any other of these sets. So
maximal number of blocks with the fixed element which could belong to

U E.).
j>ale 9

More sharp bounds on b* could be obtained if the values ak were
properly estimated. This is done below for the case of v =8, k=23
and A, = 6.

A BIBD with b;"= 22 was constructed recently in the paper of Foody and
Hedayat (1976} and here we will prove that 22 is the sharp lower bound
for bga

We will consider separately different values of the sum

ne + 0o +my o=t < 8, and we also need the following fact:

p)

13



Lemma 3.2. Let us consider a set EK/E from a support of
BIBD(8, 56 %3 21 %3 3, A|b¥*). Then at least one pair of each block
of Eh/2 does not occur in two blocks of Ek/e'
For the proof suppose that all three pairs of one block, say 123,
belong to EK/E’ it means that three blocks 120, 133, 23y also belong

to Eh/E'

FEach of the elements 1, 2, 3 has to appear in %? - %?-= 2\ other
blocks of BIBD, and we have to consider now three possibilities,
corresponding to the cases when all of &, B, ¥ are distinet and two
or three of them are the same. If €.8. O =8 # 7 then O has to be

in A/2 blocks with each of the elements 2, 3 and hence in

%% -N -2 -%-= %? blocks without 1, 2, 3. But we have L. %-+ 328 = 8\
blocks with 1, 2, 3 in BIBD so the total number of blocks exceeds or is
equal to &\ + %; = lgﬁ > 56 %- which is impossible.

The other cases can be treated in the same way.
In particwlar, it follows from the lemms that if VK/Q and “A/Q

denote respectively the numbers of pairs occurring in E%‘/2 A and A/2

times, then v}\/2 < nk/2 and since EVA/E + “K/E = 3nh/2 "

(.8) /o 2B /22 /2

Now, if t =8, +then L4 pairs which do not ocecur in EMSS = B UE.UE,

5

do not have common elements. It means that they can not belong to one
block and thus n, = O, e.nn = 24, where OB are those L pairs
3 o,y 19
2

and i #£a,8. So 6n6 + 5n5 + hnu = 32 and thus ng =n. =0, n = 8.

5
Since we can not have n, =0 for all odd i = 1,3,5 (otherwise it would

14



be possible to construct a BIBD with v = 8, k = 3 and A = 3), we must

have n, > 0; the pairs of E

1 must be there an even number of times,

so  ny is even and, moreover, n, > 4. Now in our case @, >4 and

L 1
30, = 5(n1+n2-nu) > 3.4, because 4 pairs QP must appear at least in

three different blocks each, so from (3.5)
3b° > 56+L4 + L4 , which yields b* > 22 .

In the same way we can prove that if t =7, then b* > 22. The
only difference is that we can have either a block in E5 (which was
in Eh56 above), or Eh56 does not contain one element (that is,
represents a support of a BIBD with v = 7), in the latter case b™ > e8.
For t = 6 we have to consider the possibilities of 1, 2, 3 or even b
blocks which could be included in EB'

As an example we can study the case of 4 blocks, and we can easily
prove that it corresponds to E5 and Eh56 as below (the sets are

unique to within equivalence):

Ell56 = 157) 268) 556: 578) h58) h67

E, = 123, 12k, 13k, 23k,

It follows from lenmmsa 5.27that all four blocks can not be included in

EB' Moreover, we can prove that any three of them can not be included

either.

Suppose, that 123, 124, 134 ¢ EB' Then we have with elements 1, 6

and 8 the only blocks 156, 158, 167 and 178, but

€156 * 158 = S167 * C178 = © = C157
15



thus the sum of numbers of pair inclusions 16 and 18 is less than 12,
which is impossible.

If only two blocks, say, 123, 134 belong to E,, then we can find
that 3a, = 5(n1+n2-nu-n5) > 2.4+43.5 (it means that each of 4 pairs
from E5, 12, 14, 23 and 34 must appear at least in two blocks of E,UE;
and each of 5 pairs 24, 16, 18, 25, 27 — in three blocks) and
30, = 5(nl-n5) = 4+2p (the right-hand part represents four pairs from
E5 which have to be in El’
can be easily shown that p > 1, and thus p >4, so from (3.5)

and P pairs which must be doubled). It

3(*-1) > 50 + L + %? and b > 22. For n; <1 the result follows
straight from (3.5).

For £t =5 we can prove that the maximal number of blocks in E5
is five; then we have 15 pairs which occur in Eh56’ at most 5(= v5)
pairs which occur six times in E5 and at least 5(= ”5) — which are

in E5 three times, so for s = Vg = 5 we have as &bove
3, = 5(nl—n5) = 5+2p, p here is equal to 2,5,... . For p=2 the

solutions of the equations

nu+n5+n6 =5
n -0y =3
g =0
can give us b’ = zin =21 if n, =1, n, =5 = 8-n = n.+3
3 6= 0y =2 My 501 = O3
and ng = 0,1,2,5 or 4, and we can verify that for such values of ny

BIBD can not be constructed.

16



The other case, p=5, leads us to the BIBD from the paper of Foody

and Hedayat (1976), and if b >5>0y then we can use (3.5) to prove

5)
that b* > 22:

We have

5ny 5n5 + Hs +2p ,
5n5 = 21/5 + M
(3.9) and

0y = 3(nytmy=my-ng) > 2uy + 5 (15-v3p3)

i

the latter simply states that each of s pailrs must appear in ElU E2
at least in two blocks and each of 28--15-;15--1/5 pairs which do not

belong to E UE, — at least in three blocks. These equations imply
456 773

: z e
040, = (nl-nS) + (n1+n2-n1-n5) =13 -V 52

9+%e(since ve < U4) 5

3

and thus, because 2p/3 is an integer, from (3.5) follows b* > 22,
At last we can consider the cases with t < 4. As in (3.9) we

can write

3(y=ng) = ug + 2p

-

and

17



Now, from 28-3t pairs each may occur in O, 1, or 2 blocks of

EB’ and we have with the help of (3.8) an = v5+(v5+p5) < n5+(28-5t)

and thus
3t
ny <1k -5
Then
3t , 20
a_ - e =l
1% 21 -5+ 3

and as above it implies b* > 22 for all cases but one: t =4 and
vy = p5 = n3 = 8. TFor the latter we can prove on the other hand,that

p>2, thus p >5 and from (3.5)

¥ > o2,

So the sharp lower bound for bg is 22. 1In the mentioned above paper
by Foody and Hedayat it is shown, that for any b* > 22 there is a BIBD
with the support size b*.

The author is grateful to Professors J. Kiefer and A. Hedsyat for

having introduced me to the problem and for helpful discussions.
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